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Stationary States and Hydrodynamics 
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The large-scale behavior of FHP-type cellular automata is investigated in the 
presence of some additional random effects. It is shown that every translation- 
invariant stationary state of the modified model is a superposition of product 
measures. By means of the entropy argument of Yau and of Olla, Varadhan, 
and Yau, the macroscopic (Euler-type) equations governing the hydrodynamic 
behavior of FHP automata are also derived. 

KEY W O R D S :  Euler equations; hydrodynamic limit; local equilibrium; 
ergodicity; reversible processes; relative entropy. 

1. INTRODUCTION 

We consider particles sitting at the points of  the two-dimensional  tri- 
angular  lattice n_. Each particle has some velocity o ~ V  = {e ~ e", 
- e  ~ - e ' ,  - e " } ,  where e ~ e', e" are distinguished unit vectors of  B_ such 
that  e ~ + e' + e" = 0, i.e., each angle between them is just 120~ thus tl_ is the 
additive subgroup of ~2 generated by V. In general, if o~ U, then o' is 
obtained from o by rotat ing it by + 120 ~ and o " =  (o') ' ,  that  is, e ' =  (e~ ', 
e " =  (e~ ", etc. The configuration space is restricted by an exclusion rule: 
particles at the same site must  have different velocities; empty  sites are 
allowed. At unit times the particles sitting at the same site undergo random 
collisions and pass to the next site in the direction of  their velocities. ~ 
Since the evolution preserves the total number  and m o m e n t u m  of particles, 
F H P  au tomata  can be considered as a primitive caricature of  gas 
dynamics; the ~'elated macroscopic  equations are similar to the true Euler 
equations. On the other hand, such models can effectively be realized on a 
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computer ,  and fairly encouraging experiments suggest that  this procedure 
of solving the macroscopic  conservation laws is less sensitive to instabilities 
than the traditional numerical approximat ion  schemes. Unfortunately the 
randomized collisions of  F H P  au tomata  are not sufficient to ensure the 
ergodic behavior  of  the system; we need some more  randomness  to derive 
the macroscopic  conservation laws. ~~ Of  course, the requirement of  com- 
putat ional  simplicity restricts very strongly the scale of  r andom effects one 
can add to the dynamics to regularize it. 

The configurations of  our system are finite or countable  subsets X of 
= D_ x V; thus the configuration space is 5 r =  2 • We equip 5f with its 

natural  product  topology and Borel field 5~. There are two ways to repre- 
sent a configuration X~  ~r, namely r /=  tl x and v = v x, where q: 0_ x V 
{0, 1} denotes the occupat ion number ,  while v: D_~--, ~ =-2 v is the lattice 
version of the very same configuration X c X .  More  precisely, r /x=  
tlX(q, v ) =  1 if we have a particle of velocity v ~ V  at site q eL,  i.e., if 
(q, v) E X, and it is zero otherwise. On the other  hand, v x x = (Vq)qEO_, where 
Vq x denotes the set of  velocities of the particles sitting at site q e 0_; i.e., v x = 
{ v e V :  ( q , v ) e X } .  

Total  number  and m o m e n t u m  of the particles of  a configuration X e  f 
at site q e [1_ are denoted by Nq = Nq(X) and Pq = Pq(X), respectively, where 

gq(X)= ~ r]X(q,v), eq(X)= ~ ~lX(q,v) v (1.1) 

One step of the evolution is given by a r andom transformation T: f ~ Y" 
of type T = S C ,  where S is the free streaming of particles and C = C  r 
specifies collisions governed by a r andom element y. 

Free Evolut ion.  S: Y ' ~ Y "  is a deterministic t ransformation 
defined by tlsX(q, v ) = q X ( q - v ,  v). It is plain that S does not violate the 
exclusion rule. 

Coll is ions.  In general, a collision rule is a one-to-one map  
/7: "t ~ ~ ,/r preserving the total number  and m o m e n t u m  of particles at the 
given site. Nontrivial  collisions are possible only if Nq = 2, 3, 4, but we do 
not use all possibilities. A subset D,, _-- { v, - v } ,  v e V, of  velocities is called 
a dipole, and ~,, = { v, v', v"} is a tripole; they are the objects of  collisions. 
The collision mechanism Cr: Y" ~ Y" of a simple F H P  au toma ton  is defined 
by a binary sequence y = (Yq)q~O._,)'q = +__1, as follows. For  each q e  0_ we set 

D,,, if Vq=D,. and yq=  +1 

x = D , .  and ) , q = - I  g . x _  D,.,, if Vq 
x=-i]-,, and ),q= +1 vq - T_,, if Vq 

Vq x in all other cases 
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Collisions at different sites are independent of  each other with 
common  distribution P[yq = -t-1 ] = P[yq = - 1  ] = 1/2 for each q e L. Let 

t ~t:()Pq)qeL, tE[~J, denote an independent sequence of  sets of binary 
variables as specified above and let C v, denote the corresponding collision 
operator; then for any initial value x e A r  the recursion Go--X, 
~, = SCv,~,_ ~ for t e  N defines a Markov chain in (Y', ~ )  called the simple 
F H P  automaton.  In case of  the original modeP ') the reflection of  tripoles 
is not  randomized; we have to reflect simultaneously every tripole 
appearing in the configuration whenever the exclusion rule allows us to do 
so; the associated collision operator  will be denoted as C ~ The modification r" 
introduced above is needed to ensure the proper ergodic behavior of  the 
system. In fact, we need even more randomness; see next section. 

A distinguished family of  states, the class of local equilibria, 
corresponds to the classical conservation laws N and P. For  any set of  
parameters l~=(Zq,  Uq)q~O_, Z q E ~  and U q ~  2, we define a product  
measure 2 r  on (6 r, ~-)  by 

' ~ F [ X . 4 ]  : 1-I  exp[zqNq(X)-4-<Uq,  P q ( X ) > - F ( z q ,  Uq)] ( 1 . 2 )  
qeA 

where <. ,  �9 ) denotes the usual scalar product  in R 2, F is the normalizing 
term, A is an arbitrary finite subset of L, and XA---- { Y c  •: Yc~ A x V = 
Xc~ A x V} is an elementary cylinder set in A c L. The normalizing term 
(free energy) of  the model is explicitly known; we have 

F(:, u)= y~ ~(z+ (u, v)), 
t ' ~V 

~(w) - log(1 + e ' )  (1.3) 

for : ,  w ~ R and u ~ R z. It is easy to verify that the usual thermodynamic 
formalism applies, namely 

f Nq (X)  2r(dX) = F'=(Zq, I.Iq) F _  p q : p q  : 

r _  f Pq(X) 2r (dX)  = ' - = Fu(_q, blq) 7~ q 7~ q = d 

(1.4) 

where F'. and F'u denote the corresponding partial derivatives of F; F'u ~ R 2 
t t is a vector. On  the other hand, --o = Sp(pq, nq) and Uq = S~(p, n), where the 

entropy 

S ( p , n ) =  sup [ z p + ( u , n ) - F ( z , u ) ]  (1.5) 
..-~R, uER 2 

is finite and convex if 0 < p < 6 and n belongs to the interior of the convex 
hull of  2V. It is perhaps unusual that pq and nq depend both on Zq and uq 
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in a complicated way. However, if Uq is parallel to one of the velocities, 
then so is ~zq, and if uq is orthogonal to v ~ V, then z% is also orthogonal 
to this velocity. The set of local equilibrium distributions 2 r will be denoted 
by ~ ,  and (g~ consists of the translation-invariant elements of ~ .  It is easy 
to verify that each 2~(r is a stationary state of the simple F H P  
automaton, but there are many other stationary measures of this model. 

Our final purpose is to describe the macroscopic behavior of the con- 
servative fields N and P. For e > 0 and X~ Ar the density and momentum 
fields are defined as 

eZ x//3 ~ q~(eq) Nq(X) 
N~(X, ~p)= 2 

q~L 

P~CX, O)= 2 
q ~ t  

(1.6) 

w h e r e  q,: ~ 2  I----r ~ a n d  qJ: [~2 ~ R2 

pact support. The hydrodynamic 
suitable initial conditions we have a deterministic limit: 

N~(~Emj, cp) = ~f ~o(x, y) p(z, x, y) dx dy lim 
~ 0  

(1.7) 

P~(~[~/,], ~,)=ff  < ~,(x, y), ~z(z, x, y)> dxdy lim 
e ~ 0  

in probability, where [u]  denotes the integer part of u ~ R, ~ - - (x ,  y )~  eq 
is the macroscopic location, and the limiting densities p and ~t are governed 
by a couple of partial differential equations. 

Since the collisions preserve both Ng and Pq, w e  obtain 

N+(+,+,, ~o) - N+(+,, ~o) 

are continuously differentiable with com- 
law of large numbers means that under 

p,(x +,,  ~b)- P+(~,, ~b) 

= e2 x/~ ~ ~ [ q~( eq + ev ) -- q~( eq ) ] qr v) 
2 qEQ- vCV 

"~t3v/3 2 2 (Vq~(eq),v> qe'(q, v) 
2 q~O_ t ' ~ V  

--e3 v/3 2 (V~p(eq), Pq(~t)> 
2 

q~n (1.8) 
E 2 ~  
- 2 ~ ~ <~,(eq+ev)-~,(eq), v> qr v) 

q~O_ t'~V 

e+ x/~ Z Z <V~(eq) v, v> q+'(q, v) 
2 q ~ t  vCV 

=e3 x/~ Z Z qr v) Tr V~0(eq) Qv 
2 qcL t, eV 
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where V is the gradient operator, Tr denotes the usual trace in R 2, and Q,. 
is the operator of orthogonal projection to v e V, i.e., Q.,u = (u, v) v for 
u e II~ 2. If e ~ and e* are the unit vectors of our orthogonal system of coor- 
dinates, then the matrix of Q,, reads 

( ( e ~  z (e~ , (10 01) 
O~,=k(eO, v ) (e . , v  ) ( e , , v )  2 j ,  thus .~ ~ a , ,=  

v~ V 

The first equation of (1.8) turns into the continuity equation 
a~p +div  n = 0  as e---, 0. To evaluate the second one, we have to assume 
that the state of the system is close to a local equilibrium 2r. Since 

f e w qX(q,v) 2r(dX)=~F'(Zq+(Uq, V)); ~'(w) = 1 + e .  _ for w e R  

by a formal calculation and the divergence theorem we obtain that the 
macroscopic densities p, 7t satisfy 

O~p+divn=O, Orn+DivQ(p, zr)=O (1.9) 

in a weak sense, where Q is a 2 x 2 symmetric matrix and Div denotes its 
tensorial divergence defined by the identity 

II Tr V~Q dx dy + II ( r  Div Q) dx dy=O 

Using the correspondence (1.4) between parameters and mean values of 
local equilibria, we get 

Q(p, ~z)= ~ r re) Qv (l.lO) 
L, E k l  

where 

qh.(p, 7r) - ~u,(- + ( u, v )  ) = ~ ' ( S ~ ( p ,  n) + ( S;(p, n),  v ) )  

If the Euler equations (1.9) are uniquely solved, which will be assumed 
at least for some time interval [0, to), then the evolution of the parameters 
is prescribed, too. Since 

div lr = ~ ~"(z + (u, v) )((Vz, v) + ((Vu) v, v) ) 
v ~ V  

D i v Q =  ~ ~"(z+(u,v))((Vz, v)+((Vu)v,v})v 
vEV 

(1.11) 
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((Vu) v, v) = T r  Q~. Vu, ~ , , , v  c/, =p ,  and ZL,~v ~, ,v=n are identities, by 
a direct calculation we get an evolution for z and u in terms of their space 
gradients Vz and Vu rcf. (1.8)], namely 

a~z = - ~ Cb'p(p, rr)((Vu) v, v) = -Tr (Vu)  Q'p(p, re) 
,,~v (1.12) 

O~u + Vz= - ~ ~'~.=(p, rt)( (Vu) v, v) = -Tr (Vu)  Q;(p, re) 
v E V  

where ~ '  and Q' are the corresponding derivatives, 

Q~(p, re) = y. ~ ' . ( p ,  re) Q,,, Q ' (p ,  =) = y. ~',,.(p, a) Q,, 
v e V  v e V  

Since ~z ~ ~2, the matrix elements of Q" are also vectors; Tr is a vector 
obtained as the sum of the diagonal elements. 

It is remarkable that the macroscopic equations admit steady-state 
solutions such that the velocity field is either parallel or perpendicular to 
one of the six velocities v e V. For example, let us look for solutions of type 
p = p ( y )  and re= (rex(Y), 0), where rex = ( e  ~ re) denotes the x component 
of re e R 2. Then div rr = 0 is automatically satisfied, while Div Q = 0 reduces 
to 

~"(z + uxv.~)(z' + u:~vx) v~,v=O 
v ~  V 

where z=z(y)  and u=(ux(y),O) are the corresponding parameters, 
Vx=(V,e~ Vy=(V,e*) and z'=O.,z, ui~=Oyux, whence by a direct 
calculation 

_-0,, + ,,13, 

Consequently we have a constant 0 < c < 2 such that 

"(z(y)+U~Y--~))+~'(z(y)--u'~;Y"-"~))=c (1.14, 

for all y ~ R. This equation can explicitly be solved for z given u~, 

I / 2u~. c - - I  u, + ~cos h 2 + c(2 - c)'~'/2-] z=log~-s-~_c+log cosh-~ (-~----i~) J if 1 < c < 2  

(1.15) 
, _ c  [( z=log~-~_c+log cosh2-~z-I (c_1)2 ] cosh if O < c < l  



FHP Cellular Automata 59 

and z = 0 for any Ux ~ R if c = 1. Observe that z ~< z* = log c - log(2 - c) < 0 
i f 0 < c <  I, while z > ~ z * > 0  if 1 < c < 2 .  

Therefore for any differentiable ux: R~--, I~, (1.15) defines a stationary 
solution to (1.9). In the case of  piecewise smooth solutions the Rankine-  
Hugoniot  shock condition (~') reduces again to (1.14) in the sense that its 
left-hand side does not change across the jump, and thus we have an 
extremely rich variety of  discontinuous steady-state solutions, too. 

In view of  the entropy argument  of refs. 13 and 10, the derivation of  
the macroscopic conservation laws (1.9) reduces to the following form of 
the ergodic hypothesis: every translation-invariant stationary state of  the 
evolution is a superposition of  equilibrium (Gibbs) states 2 e cB e with ran- 
dom parameters. The same argument  yields a microscopic description of  
smooth  stationary solutions (I.15), too. In the next section we discuss some 
modifications of  the simple F H P  automata  which satisfy this hypothesis. 

2. M A I N  R E S U L T  

Random collisions of  the simple F H P  automata  are not sufficient to 
ensure the ergodic behavior of  the system; there are many other stationary 
states of  the evolution. In particular, a product  measure 2 is stationary if 
2 = 2 r ~ e  with .~q=Z and Uq=0~+~q*, where a ~ R  2, fi~lt~, and q* is 
obtained from q e L by rotating it by + 90 ~ As a superposition and weak 
limit of  such probability measures we can construct translation-invariant 
stationary states, but there might exist even more complex, degenerate or 
strongly dependent stationary states, too. The easiest way to overcome this 
difficulty is to introduce a random, symmetric exchange mechanism 
resulting in a small perturbation of  the free streaming of  particles. In some 
situations we allow a particle to jump across a bond which is not parallel 
to its velocity. 

R a n d o m  E x c h a n g e s .  Let L* denote the set of  bonds b =  {p ,q} ,  
i.e., p, q ~ L, p - q ~ V; for u ~ V we write u II b ifp - q = _u,  u,[I b otherwise. 
To define exchanges in a unique way, we have to select a pairwise disjoint 
set of  bonds 09 = L* somehow, and if b ~ 09, then we let one of  the particles 
of  velocity v~ b jump across b. More precisely, the exchange mechanism 
B =B#: X~--,Y" is defined in terms of  a set of  random velocities 

= ( ~ q ) q ~ L '  ~q ~" ~/' as follows. Let co = co(fl) be the set of bonds b E L* for 
which flb~tb and ~cllc whenever I b c ~ c l = l ,  where IAI denotes the car- 
dinality of  A c L; then 

, f q X ( p ,  v) 
rIB#X(q, vl = ~rlx(q ' v) 

if { q , p } = b ~ c o ( / ~ )  and V=Pb 
(2.1) 

in all other cases 
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For simplicity we assume that fl is a system of independently selected 
velocities such that for all b e L *  we have P[flb=V]=K if v,~lb, while 
P [ f l b = V ] = l / 2 - - 2 x  if vllb, where 0 < x < l / 4 .  This means that first we 
mark bonds independently with probability 2x and keep only the isolated 
ones, then we decide independently which particle is allowed to jump. The 
stirring of identical particles is uniquely defined and B describes a diffusive 
perturbation of the free streaming of particles. Given an independent 
sequence fl', t ~ I~, of random systems which is completely independent of 
the previously introduced sequence y', the FHP automaton with stirring is 
a Markov process in ~" defined by (0 = X~ ~r and G = SBp, Cr, G -  t if t e ~. 
We shall see that, at least at the level of Euler scaling, this random 
mechanism does not change the macroscopic behavior of the system. Of 
course, there are many other possibilities to define such a diffusive, random 
perturbation of the free motion of particles. 

In a stationary regime the random stirring mechanism maintains a 
uniform distribution of particles, all correlation functions depend only on 
the number of different kinds of participating particles. In view of a 
theorem by deFinetti such a state # admits an ergodic decomposition into 
product measures: # (dX)=  ~ #[dX]~,~,v] d#, where -~,v denotes the a-field 
of translation-invariant events. There are some degenerate stationary states 
with Vq x = Vo x for all q e L; otherwise the randomized collisions imply the 
required symmetry of the ergodic components of the stationary state. The 
original collision rule C ~ does not preserve the individual ergodic com- 
ponents; then the situation is little bit more complicated; see Remark 3.4. 
Following the ideas of ref. 4, we get: 

Theorem 2.1. Every translation-invariant stationary state/~ of the 
FHP automaton with stirring is a superposition of product measures. If 
0<#[qX(0,  v ) l~ ,v ]  < 1 #-a.s., then # is a superposition of Gibbs states 
2 r e  c~e with random parameters z~ R and uE R 2, i.e., =q=Z and Uq=U for 
all qcfl_. 

The above description of translation-invariant stationary states allows 
us to evaluate the right-hand side of (1.8); notice that the contribution of 
random exchanges is really negligible because 

qBpX(q, v) = qX(q, v) + ~, " x Xq,),(fl)[r/ ( q+  y, v)- -qX(q,  v)] (2.2) 

where Xq.y(fl) = 1 if fl permits a particle of velocity v e V to jump across the 
bond b = { q, q + y}, and it is zero otherwise. Indeed, as 

P [ , r . q . y ( f l ) = l ] = x ( l - 2 x )  ~~ forall q~fl- if v.~ly 
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and is zero otherwise, we have a diffusive perturbation of the free streaming 
of particles which vanishes in the Eulerian scaling limit t--, r/e. Our 
calculations are based on the hypothesis that the true distribution /1, at 
time t ~  r/e is close to a local equilibrium state 2r(t)e fg~. In view of the 
ideas of refs. 13 and 10, the exact meaning of the relation St, ~ 2r,~ should 
be given in terms of relative entropy. Here we reformulate their argument 
in a context of infinite volumes. 

Let A"c O_ denote the zero-centered hexagonal box of radius n, i.e., 
A~ while A"={q+v: qeA "-t, v e V } ,  and define the relative 
entropy of two Borel probabilities St and 2 in the box A" by 

St[XA.] (2.3) z,,[st 12] -- 5". St[ x.~.] log ).[XA. ] 
Xdn 

In view of the general philosophy we have to minimize /,,[st,12r,~] in a 
global sense; the optimal set of parameters is predicted by the macroscopic 
equations (1.9) via (1.12). The main steps of this approach can be outlined 
as follows. At a given level e > 0 of scaling the process ~, is started with an 
e-dependent initial distribution Sty; the distribution of ~, will be denoted by 
Sty. The argument is completed by showing that 

lim sup sup e2l,,[p;12r,(,)] = 0 (2.4) 
e ~ O  s Ul<~d 

for all d>O and r < r o ,  where F~(t)=(Zq(t),Uq(t))q~ is a suitable set of 
time-dependent parameters. Indeed, for any event A,, depending only on 
the configuration in A" we have 

1 + z,,[st, I ~,-,~,)] 
St~EA,,] ~< I2.5) 

- l o g  2r,,~[ A,,] 

Thus the exponential law of large numbers we have for 2r,(,) implies the 
hydrodynamic law of large numbers. The derivation of (2.4) is based on a 
recursive estimation 

I,~,[st~+, J2r , ,+])]  ~<(1 +eK)l~,+,[st712r,,,,] +R,~,(t) (2.6) 

where R is a remainder vanishing in the hydrodynamic limit. Since (2.6) is 
explicitly solved by iteration, we get (2.4) whenever the latter holds true at 
r = 0 .  Of course, the remainder shall vanish only if we choose the 
parameters in an optimal way as prescribed by the macroscopic equations; 
we use the following approximation scheme. 

Given the initial values Zq(0) and Uq(0), we define Zq(t+ 1) and 
Uq(t + 1 ) for all q ~ H_ by induction. First we introduce the gradients o f -  and 

822/77/I-2-5 
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u, Vzq is a vector, VUq is a tensor; they are defined by their least squares 
estimators: 

Vzq(t) = �89 ~, [Zq + v( t ) -  Zq(t)] v and VUq(t)= �89 ~. [Uq+,,(t) - Uq(t)] o v 
v ~ v  t,~V 

(2.7) 

where uov denotes the diadic product  of  u, v e R  2, i.e., uov: R2w-,R z is a 
linear t ransformation such that  ( u o v ) y = u ( v , y )  for all y~RZ; thus 
vov = Q,,. It is useful to notice that  we have identities above if Zq+v-Zq= 
(Vuq, v) and Uq+o-uq=Vuqv. 

Having in mind (1.8), (1.9), and (1.12), the evolution of parameters  is 
defined by 

Zq(t + 1) = Zq(t) - ~ ~'vp(p'q(t), nq(t))((Vuq(t)) v, v) 
~ v  (2.8) 

Uq(t + 1 ) = U q ( t ) - V z q ( t ) -  ~, ~'~(pq(t), ~q(t))((Vu~(t)) v, v) 
u~V 

where pq(t) -F'~(Zq(t), Uq(t)) and z%(t) -F'u(Zq(t), Uq(t)). 
To derive (2.6), besides ergodicity we need also some smoothness  of  

the parameters  defined by (2.8). Euler-type equations like (1.9) develop 
shocks in a finite time, thus we can have the necessary smoothness  for a 
short  interval [0, to) of  macroscopic  time only; our  conditions are sum- 
marized below. For  each 0 < t < zo and e > 0 we have some finite numbers  
a(z) and b(e, r) such that  b(e, t )  ~ 0 if z < to is fixed and e --* 0; moreover ,  

e Izq(/)l + e  luq(t)l + IVzq(/)l + IIVuq(t)ll ~<a(z)e 

IZq+ v(t) - Zq(t) - (Vzq(t), v)l + luq+ v(t) - Uq(t) - Vuq(t) v[ <~ eb(e, r) (2.9) 

-" t " IIVuq VUq(t)ll <~eb(e, z) IV-q+,,( ) - -VZq( t ) [  + +t , ( t ) - -  

for all q~  L, v e V, and O<~et<<, z, where lul denotes the length of a vector  
u s R z, while [IA PI is the usual norm of a tensor A. Let us remark that  the 
second and third conditions above express the existence and the continuity 
of the gradients of  the parameters.  

T h e o r e m  2.2.  Suppose (2.4) for z = 0 and (2.9) for 0 < z < to; then 
the approximat ion  scheme (2.7) predicts the hydrodynamic  behavior  of  the 
F H P  au tomaton  with exclusion for t < Zo/e in the sense that we have (2.4) 
for all r < Zo; consequently 

lim ~ ~p(eq)(Nq(~t~/~] ) - S'~(Zq( [ z / t ]  ), Uq([ r/c] ))) = 0 
q~t (2.10) 

lira ~ '  (~(eq),Pq(~t~/,])-S',(Zq([Z/e]),Uq([r/e])))=O 
E~Oq~Q_ 
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in probability for each r < ro and continuous r R 2 w, R, ~O: ~z ~_, Rz with 
compact support. 

Although local equilibria corresponding to the stationary solutions 
(1.15) of the macroscopic equations are not stationary states of the 
microscopic evolution, such profiles are reproduced in the hydrodynamic 
limit as follows. Suppose that ,~q . . . .  • r and Uq~ --__Uq+eolle e ~ for all qel_. 
Then from (2.7) we get 

e o , , I g q + e , - - U q + e .  
Vzq=(Zq+e,-Zq+,,,)-- ~ and (Vuqv, V ) -  V~ ~ (v ,e~  *) 

Thus (2.8) preserves the properties of z" and u" listed above. Moreover, if 

E ~ tt C tt ~ - -  
lgq + e ' - -  lgq + e" ~.1 ( Z q  "~- Uq/2) - ~ '  ( Z q  Uq/2) 

"" "" - , ,  , , ( 2 . 1 1 )  "q+~'---q+e" 2 ~"(Zq+Uq/2)+ 5P (zq--uq/2) 

then Zq(t)-Zq and Uq(t)- Uq are stationary solutions to (2.8). 

C o r o l l a r y  2.3. Let ux: • ~ R be a bounded and continuously dif- 
ferentiable function, set Uq-Ux(e(q,e*))e ~ and define Zq by (2.11), 
. q " - " -  ,q+~O and -o"-- ze" -- Zo for all q ~ D_ and e >0.  IfF'(t)=(Zq, Uq)q~Land 
the initial distributions /~ satisfy (2.4) for r =0 ,  then the conclusions of 
Theorem 2.2 hold true for all r > 0. 

A microscopic model of the stationary flow of particles in a tube can 
be introduced by modifying the evolution law at the boundary. The 
associated stationary states and their hydrodynamic behavior are to be 
discussed in a forthcoming paper. 

3. P R O O F  OF T H E O R E M  2.1 

Our starting point is an entropy argument that goes back to Holley. cs~ 
Since time is discrete and the Markov process defined by the modified F H P  
automata is not reversible, additional steps are needed/5"2'9'4) We show 
that in a translation-invariant stationary state the specific entropy is con- 
stant, which implies in general that the state is reversible with respect to 
collisions and exchanges; thus we have to describe all reversible measures 
of C~, and Bp separately. The case of collisions is trivial; the very concrete 
problem of Bp.can be handled as follows. 

For A c n_ let ~-A denote the a-field generated by the variables 
{qX(q, v): q~A, v~V}.  I f A  =A" ,  then the notation ~,~, is used, and ~ ( Y ' )  
is the set of ~,-measurable functions; Co(Y') = I.J ~ , (X)  is the set of local 
(cylinder) functions. Let ~ ( ~ )  denote the space of Borel probabilities on 
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(X, i f ) ,  while ~o(X) is the set of translation-invariant elements of G~(Y'). 
Especially within the text abbreviations like 2[~b] and 2[~blr~,t] are used to 
denote expectation and conditional expectation. If/2, 26~(Y' ) ,  then the 
relative entropy of/2 with respect to 2 is defined as 

I[/2 [2] =sup  {f  ~bd/2-1ogfe~d2:q~Co(~')} (3.1) 

The local relative entropy 1,[/212] is obtained by restricting "sup" to 
~be~,,(~f); notice that L,[/2]).] =I[/2,,[2],  where/2,, is an extension of/2 
from ~,, defined by 

f~b(X)/2,,(dX)=f2[~bl~,,] d/2 for ~b~Co(Y) (3.2) 

In this section as a reference measure we are going to use the uniform 
Bernoulli measure 20 ~ f#e, i.e., 20 = 2r with Zq = 0 and Uq = 0 for all q ~ k 
The specific entropy of/2 E ~o(5 r) relative to 20 is then 

_ l i [ /2]2O]=l imsupI , , [ /2[2~ lim 1"[/212~ (3.3) 
, , _+~  IA"I . . . . .  IA"I 

The existence of the limit follows by subadditivity of entropy. Since the 
dominating measure 20 is a stationary state of the evolution, entropy and 
specific entropy are nonincreasing functions of time, and they are constant 
in a stationary regime. This relation yields some information on the 
reversible components C and B of the composed process. First we 
investigate this situation in a general framework. 

Let P=P[dY[X] denote a local and translation-invariant transition 
probability in (.~' ,ff),  i.e., P [ . I X ] ~ ( X )  for each X ~ " ,  P [ A [ . ] ~  
~,+ 1(~') if A ~ J~,,, and finally P[sqA [ s q X ]  = P[A IX] for all X~ of, q ~ fl_, 
and A e i f ,  where s k denotes the shift by k e IL, i.e., q,*X(q, v)- ~lX(q-k, v) 
for all q ~ L and v E V; the shift of events, functions, and measures is defined 
accordingly. The associated operator of conditional expectation is P~b = 
P(b(X) - P[~b [X], and a probability measure p ~ ~(sr )  is transformed by P 
to p P  such that pP[~b] =p[P~b]. Assume that 20 is a stationary measure 
of P and let ~ ~ Co(5r); then P~b e C o ( f )  and by convexity 

log 2~ * ] = log 2~ * ] >/log 2~ P* ] 

Thus 1[/2 P ]2 ~ ] ~< I[/z ]2 ~ ] for any St ~ ~(Sr). Therefore if ~b e ~ ( X )  and/1,, 
denotes the extension o f p  e~ ' (~ ' )  from ~,, via (3.2), then by locality of P 

PP[$] =/2,,+, P[$] =/2,,+ ,[P$] 
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Consequently 

/,,[a P I 2 ~ ] ~</[a,,+, P 12~ ] ,.< I[an + ~ I 2~ ] = I, ,  + l [ a  I ). ~ ] 

whence for any a ~ ~o(X) we have 

~ a P l 2  ~ ] ~<lim i n f / [ a ' P  I ;t~ ~</[a 12 ~ ] . . . . .  I,'lnl (3.4) 

On the other hand, if go: X x X ~ ~ depends only on a finite number of 
coordinates, then by convexity and (3.1) we get 

fI~p(X, Y) P[dYI X] a,,(dX) - log I I  X] ~< I[a,, 12 0 ] eq,(x, V~P[ dY I 2~ 

(3.5) 

Thus choosing ~p in a clever way, we obtain a lower bound for the 
decrement of/~ 

Indeed, denote P * =  P*[dXI Y] the backward transition probability 
of the stationary process with initial distribution 2 0 and transition 
probability P, i.e., P[dYI X] 2~ P*[dXI Y] 2~ and set 

/. 
~p(X, lO = ~b(X, Y) + log f,,(Y) - log J e r r)P*[dKI Y] 

where f,, is the density of a,,P with respect to 2~ ~ will be specified a bit 
later. From (3.5) by a direct calculation it follows that 

fI  (b( X, Y) P[ dYI X] a,,( dX) - f log P*[ er I X] a,,P(dY) 

~< IEa, ,  I i ~ ] - IIa,, P I A~ ] (3.6) 

for any ~: X x X ~ R depending only on a finite number of variables. 
Suppose now that P* is local in the following sense. P* maps 5~,(X) 

into ~,,§ ~(X) and we have some R >  0 such that 

I ~](K) @2(X) e*[dXI Y] = f @~(X) e* [dX I Y] f ~2(X) P*[dX I Y] (3.7) 

whenever ~k] a n d  ~2 are measurable with respect to ~ ,  and ~A:, 
respectively, and the distance of the sets A,,  A2 c t exceeds R. In the case 
of collisions and random exchanges, P * =  P, that is, 2 o is a stationary and 
reversible measure of the transition probability P. The factorization 
property (3.7) also holds true with R > 2. 
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L e m m a  3.1. Suppose that P is a transition probability satisfying 
the conditions listed above. If/2 e ~o(5f) and/ [ /2Pl ; t  ~ =/[/212~ then 

~ $(X, Y) P[dYI X]/2(dX) = fff ~,(X, Y) P*[dXI Y] P[dYI Z]/2(dZ) 
(3.8) 

for each $: ~V x s ~ R depending only on a finite number of variables. 

Proof. Let $,(X, Y)= ~b(skX, skY) and choose ~b of (3.6) as 

r ~ r 
k c A n ~ m n  

where mO_={mq:q~O_} and m~l~/ is so large that the factorization 
property (3.7) applies. Since we have an I~N such that P*[r  is 
measurable with respect to ~ if k~A n-~, dividing both sides of (3.6) by 
IAnl, using/2,[~o] =/2[r for ~0 ~ ~-(s and the translation invariance of 
/2, we get 

ff ~k( X, Y) P[ dYI X]/2(dX) <~ f log P*[ e* l Y]/2P(dY) 

and this inequality holds true for any multiple ~ff of ~b, too. Dividing by 
0c :/: 0 and letting ~ ~ ___0, we obtain the statement of Lemma 3.1. QED 

Each step of the modified FHP automaton is composed of three 
transition rules Ps, Pc, and Ps. The free streaming Ps is completely deter- 
ministic; we write S~b(X)= $(SX). The operators of conditional expectation 
C and B for collisions and exchanges are defined for every continuous 
~b: ~r ~ R by 

c4, = c~,(x3 - P c  [4, I x ]  - J" ,~(c,, x )  P(dy) 

B$ = Be(X) - PsE~b I X] E f $(BaX) P(d~) 

The corresponding evolved measures are denoted as /2S, /2C, and /2B, 
respectively. Any one of the operators above maps ~(~r)  into ~+](SF) 
and preserves our referece measure 2~ therefore i[/21 x~ =f[ /2CI 2~ = 
/[/2CBI 2 ~ whenever /2 is a translation-invariant stationary state of the 
composed evolution, i.e., /2 =/2CBS. This relation does not imply that 
/2 =/2C or/2CB =/2. For example,/[/2Sl2 ~ =/[/212~ for any translation- 
invariant/2, while S* = S - ' ;  thus Lemma 3.1 does not say anything about 
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the free motion. On the other hand, C* = C  and B* =B;  thus we have 
reversibility (detailed balance) of the randomized transitions. As a conse- 
quence we obtain that /2 is symmetric with respect to the elementary 
transformations of the random mechanism separately. 

For q e R_ we define the maps D'q, Dq:X ~ X by D'qX= DqX= X if Vq x 
is not a dipole, and if vqX- D~,, then Oq' and Dq" turn it into D~., and De,, 
respectively; other parts of the configurations are not changed. Rotation of 
a tripole at site q is executed by Tq: .~l'---*X such that T q X = X i f v  x is not 

x _  for some v e V. An x is the only change if Vq - T  t, a tripole and vXq--* -Vq 
elementary exchange E~: X~--~X for be  0_*, v~V means that qX(k, v) and 
fix(j, v) are exchanged if b =  {k,j};  the rest of the configuration is not 
altered. 

Lemma 3.2. Suppose that /2e#o(X) and fl-/2ClA~176 
then 

I r r I $(TqX)/2(dX)=f r (3.9) 

for all q e n_ and r e Co(X). 

Proof. Since C* =C ,  choosing ~b =r  in Lemma 3.1, we see that 
/2C 2 =/2. A two-step transition C 2 may change the configuration at a site 
q e R_ only if Vq is a dipole or a tripole; then it is kept fix with probability 
1/2, it is turned to right or to left with probability I/4 - 1/4 if Vq is a dipole, 
and it is reflected with probability 1/2 if Vq is a tripole; changes at different 
sites are independent of each other. This means that we essentially have a 
problem on finite-state Markov chains of dipole and tripole configurations. 
It is easy to check that their conditional distribution given the rest of the 
configuration does not depend on the condition; it is uniform Bernoulli, 
which proves Lemma 3.2. QED 

Let us remark that /2 e #o(X) and /[/2 C ~ 120 ] = / [ a  12~ imply only 
t I !  symmetry of/2 with respect to  Dq and Dq. The case of random exchanges 

is a little bit more complicated, but we get much more information on the 
distribution. 

L e m m a  3.3. Suppose that p e S o ( X )  a n d / [ p B [ 2  ~ =[[/212~ then 

J" $(E;X)/2(dX) = j" q~(X)/2(dX) (3.10) 

for all b ~ L*, b,H v ~ V, and r e Co(X). 
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Proof. Let X, Y~W and denote X A the event that the random con- 
figuration coincides with X on A c lL. From Lemma 3.1 we know that 

[ PB[ Xz.+, [Z]/z B(dZ) (3.11) p[X.~.+,] 
-=~r,, P~,[ YA, IX] 

whenever Ps[  YA,[ X] > 0. Since p is translation invariant, it is enough to 
show that, e.g., if b~ = {0, e ~ and v~eV is not parallel to b~ then 
~t[E~',XA,+~] =p[XA,,+,] for all X~Y" and n >  3. To check this exchange 
symmetry of /4 we construct a distinguished configuration Y=X* 
depending on X in such a way that Z e X*, implies a Markov property 

PB[E~',Xz.+,IZ] Ps[E~',X*.IX] 
= (3.12) 

PB[XA,,+'IZ] PB[X*.IX] 

Indeed, as Ps[ EL', YA. I Z]  = Ps[ Y.J,, lEE, X] is an identity, (3.11) and (3.12) 
imply the statement by a direct calculation. We may and do assume that 
E~', X # X. 

To define X*, let 8(X) denote the boundary of x c i r ;  it is a set of 
marked bonds corresponding to effective exchanges: 

O(X) = { (b, v): b elL*, v e V, v~[ b and E'~X# X} 

and consider a maximal set O*(X)cO(X) containing (b l ,  v , )  such that if 
(b, v), (c, u)eO*(X) are different, then b n c = ~ .  Then 

co*(X) - { b elL*: (b, v) z O*(X) for some v ~ V} 

is a set of disjoint bonds. 
Observe that cT*(X) represents a maximal set of allowed changes of X, 

i.e., (c, u)eO(X) implies b n c # ( ~  for some (b, v)eO*(X). Now we define 
X* as the configuration obtained from X by executing all possible 
exchanges prescribed by 0*(X), that is, 

x * -  I] E~;X 
(b.r)zO*(X) 

The dependence structure of the random exchange mechanism is repre- 
sented by a set of binary variables Z = (Z~)b+~. such that Zb = 1 ifflb.~ b and 
/~ II c for all adjacent bonds c, i.e., Ic c~ bl = 1, and Zb = 0 otherwise. Indeed, 
an exchange across belL* takes place i f Z b = l  but Z c = 0  for Icr~b]= 1, 
and the way of exchange does not depend on the rest of the configuration 
offl. 
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To understand (3.12), let A s be the event that co(fl)~b, i.e., Zs = 1 but 
2'c = 0 whenever I c n  b l = 1; denote ~s  the complement of A h, and set 

A,,':= H A s 
b ~ A  n 

S I ~ b E ~ o * ( g )  

In view of  the construction of A,X, for any event C c A,X depending on the 
values of  Zs for b r A " - l  only, we have 

P[ A b' I AXC] = P[ AS'IA,,] = 4x(1 - 2x ) ,o - . ,  

where 4x=P[fls.H b] and m denotes the number  of  bonds c such that 
]c:~bll = ]cc~bl = 1 for some b a og*(X). This means that 

? [ 2 s ' M c ]  ? [ ~ '  1A,,::] 
p[Ab,AxC ] p[As, lA,x]-C,,(X) (3.13) 

does not depend on C; therefore each side of  (3.12) equals c,,(X)/4. Indeed, 
we have 

e~[  e;;,, x* .  I x ]  -~, ,: :: P [ A  A,, C,, ] 
P a [ X * .  I X] s, ,: x 4P[A A.C,,] 

eB[E';',X.,.+,IZ] -,, ,~ x.z ~'[a A,,C,, ] 
ps[XA.+,[Z ] b, x x.z 4P[ A A,, C,, ] 

where C =  C, x and C =  Cf, "z specify the bond structure of the prescribed 
transitions around the boundary  of A" from X and Z, respectively, which 
proves Lemma 2.2. Q E D  

Now we are in a position to complete the proof  of  Theorem 2.1. 
Observe first that by means of  a finite number  of  consecutive operations E~ 
we can exchange qX(q, v) and qX(p, v) for any pair p, q~ fl_ and v E V in 
such a way that the rest of  the configuration is not altered. Therefore if 
p ~ ~o(X) satisfies i[p B[2 ~ ] = l ip [ 2~ and ~ ~ Co(X) does not depend on 
the value of  qX(q, v), then by Lemma 3.3 

f qX(q, v) fb(X) p(dX) = f fiX(q, v) ~b(sUX) p(dX) 

whenever k e U_" is so far from q that neither does sk~ depend on qX(q, v), 
and thus for any finite set A c U_ consisting of  such sites k we have 

1 
f qX(q,v)r A f qX(q,v)r (3.14) 
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Sending A ~ 0_ in a suitable way, by the ergodic theorem [ or by a weak 
Q_2(d.U) a rgument ]  we obtain that  

I rlX(q, v) r .u(dX)= I .u[rlx(q, v) l~ ,~ , , ]p [ r  (3.15) 

which means that  almost  every ergodic componen t  p[dXl~nv] of  p is a 
product  measure. 

Suppose now that  p ~ o ( s  r)  is a s tat ionary state of  the composed 
evolution; then 

/[.u 12 ~ ] ---/[/~ C t 2 ~ ] = i[/~ C B I 2  ~ ] = i[.u CBS I ;~ ~ ] 

whence .U = .PC by Lemma  3.2, while .U =.UB by Lemma  3.3. We know also 
that  .U is a superposit ion of t ranslat ion-invariant  product  measures,  conse- 
quently .U =.U S, which proves the first s tatement of  Theorem 2.1. 

Finally, if O<p~.=-.u[qx(o, v ) l ~ , v ]  < 1 .u-a.s. for each v ~ V ,  then 
.U[dXI ~i,v] = 2 'v .u-a.s., where 2 '~ is a homogeneous  product  measure for 
w=(w"L~ 

2w[XA] = I-I I I  exp[w~'qX(q, v)- ~U(w")] (3.16) 
q~A v~V 

and w ~' is specified by p~=~'(wV). F r o m  L e m m a 3 . 2  we obtain 
immediately that  each ergodic componen t  2 w is also symmetric  with respect 
to the individual collision operators  D'q, D~, and Tq; consequently 

W~..}_w-V= wV'+ W-v ' :Wv"+ W-V" 
(3.17) 

wV + wV'+ wV"=w-V + w-~'+ w-V" 

This means that  we have some uniquely determined z a R and u �9 R 2 

such that  w ~  + (u ,  v) ,  namely 

2 E o 
s  t, E V  

which completes the proof. Q E D  

R e m a r k  3.4.  If all tripoles are flipped simultaneously,  i.e., if we 
choose the original collision mechanism C ~ then we get wL'= z + (u ,  o)  + 
if v ~ V + = {e ~ e', e"} and w" = z + ( u, v )  - 6 otherwise, where 

E (w'-w-v) 
t. e v  + 
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The corresponding ergodic components 2 'v of/a are preserved by S, B, and 
by the randomized rotation of dipoles, but the synchronized flipping of 
tripoles changes the sign of O. The new parameter 0 is associated with the 
quantity N*, 

N * ( X )  = - ~ (rlx(q, v ) - q X ( q ,  - v ) )  
v ~ V  + 

and if fi denotes the joint distribution of the parameters, then 

I f f  e z + 3'~/7(dz, du, dO) = IIf  e3z - 3'~/7(dz' du, dO) 

is the criterion of stationarity. Since N* is not conserved by C ~ the deriva- 
tion of the macroscopic equations seems to be problematic in that case. 

4. P R O O F  OF T H E O R E M  2.2 A N D  ITS C O R O L L A R Y  

Let 2, = 2r,(,~ be the time-dependent local equilibrium distribution we 
want to fit to the true state/~,; the intermediate steps of the evolution are 
denoted as/~', =/~,C and/1~' =/I;B; thus/1,+~ =/~'S. Remember that most 
objects here and below depend also on the scaling parameter e > 0. Let I s 
denote the relative entropy of the joint distribution of the variables 
{qX(q, v): q + v e A " }  and let g~(t, X) be their joint distribution under 2,; 
then 

I , [ p , + , 1 2 , + l ]  s ,, -1 sr ,, = I , [ /~ ,  12,+,S ] =I,L/~, 12,] +DS(t) (4.1) 

where, using the abbreviation Wq(t)=--Zq(t)-t-<Uq(t), V), 

g~,( t, X) "" dX" 
DS( t ) - - I l ogg~( t+ l ,  s x ) l l t t  J 

= ~ Wq(t)t~;'[vl(q,v)]--~(Wq(t))  
q + u c A  n 

_ ~;~ Wq+v( t+ l )k t~ ' [ r l (q ,v ) ] - -~(Wq+L, ( t+ l ) )  
q + t ' ~ A  n 

<<.K, nZe2+ ~. [Wq+v(t+l)-wq(t)](2 ,[r l (q ,v)]-k t ' / [q(q.v)])  
q+v~a. (4.2) 
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as ~'(Wq(t)) = 2,[q(q, v)] and ~"  is bounded [cf. (2.9)], whence 

DS(t) <~ Kt n2e 2 + K2n2eb(e, r) 

+ ~. [Wq(t+ 1)--Wq(t)](2,[q(q, v)]--kti '[q(q, v)]) 
q + l ' e A  n 

+ y" [Wq+~,(t)-Wq(t)](2,[q(q, v)] -/~','[r/(q, v)]) (4.3) 
q + t ,  eAn  

Here and later on, K, K], K 2, K~, etc., denote constants depending only on 
a(r). 

Now we can bring in the basic parameters Zq, Uq, their gradients (2.7), 
and the conservative quantities Nq, Pq as well. Again by smoothness we get 

DS(t) = K 1 nZe 2 q- K'2n2eb(e, r) + K3ne 

q- 2 ~ [7.q(t+ 1)--Zq(t)](J.,[Nq]--fl;'[Nq]) 
q e A  n+l t ' e V  

-k- Z 2 (Uq(t+l)-uq(l) , '~,[eq]-/l i '[eq]> 
q ~ h  n+l t ' E V  

q- E ~ (V.Tq(/), 2,[Pq] -I~'[Pq]) 
q E A  n+l I ' ~ V  

+ ~ y" (VUq(t) v, v)().,[q(q, v ) ] - / ~ , [ q ( q ,  v)]) (4.4) 
q e A  n+l t ~ e V  

The third correction O(ne) above is due to certain missing terms at the 
boundary of A". The critical sum is certainly the last one; observe that 
since (Vuv, v) = T r  VuQ,,, it is just the trace of the sum of the tensors Gq(t) 
for q~A "+1, 

Gq(t) - (Vuq(t)) Q(pq(t), ~Zq(t)) -(Vuq(t)) f Y" qX(q, v) Q,,ll~'(dX) (4.5) 
I:E V 

where pq(t)-2,[Nq] and nq(t)-2,[Pq]. Suppose for a while that the 
following approximations are justified: 

y '  r/(q, v) Q,. ~ Q(Nq, Pq) .~ Q(pq, ltq) + Q'p(pq, 7Zq)(Nq -pq)  
v e V  

+ ( O'(pq, 7[q), eq -- ltq) 

(Q ' ,Pq-r%)  is a tensor whose matrix elements are scalar where 
products, 

<Q'n, eq-ltq> --- 2 (r 7"gq), e q - - 7 ~ q >  Q,, 
I ' E V  
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and cP'v, is the (vector-valued) derivative of q~, with respect to n. Then all 
terms of (4.4) cancel in view of the construction (2.8) of the parameters F, 
which is essentially what we have to show. To make the argument correct, 

/ for sequences Y= (Yq)qeL by let us introduce block averages Yq 

1 _  1 
Yq=IA'I ~ Yk 

k e sqA t 

In particular, the symbols NIq(X) and PIq(X) are defined in this way, and 
the block averages of the sequence 

(q(X)  = ~. qX(q, v) Q,, 
t ' ~ v  

will be denoted as (/q(.y). A crucial step of the argument is the so-called 
one-block estimate of ref. 6 expressing the required ergodicity of the under- 
lying process. 

L e m m a  4.1. We have 

, T  f ~--o Rq(X)flt(dX) = 0  (4.6) lim lim sup n ~  ~, i ,, 
1 ~  + ~ l  T ~ + ~ l  i =  q E A  n 

1 1 4  +oc, 

where RIq( X) -II~Zq(X)- Q( N~q( X), Uq(X))ll. 

Proof. The one-block estimate is a statement on the space-time 
averaged distribution 

I I r 

P~" - Z+-----1 IA"I )-" ~ sq/~;' 1 = 0  q ~ A  n 

Its weak limit points are translation-invariant stationary states of the com- 
posed evolution, thus by Theorem 2.1 they are identified as superpositions 
of equilibrium states from f~e, and the proof is completed by the law of 
large numbers. QED 

In view of the smoothness of parameters, we can replace (q(X) by its 
block average.(/q(X); the error of this step is only n21o(e)+nl20(e); the 
second error term comes from the boundary of A". On the other hand, 

Q( N'q, P'q) = Q(pq, nq) + Q'p(pq, nq)(N'q - pq) 

, ] ,  / / t - n  o ) (4.7) + (Q,,(pq, nq), Ptq-nq) + -~Q (Oq)(Nq-pq, Pq 
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where Q"(O)(., .) is a quadratic form for each value of the intermediate 
point O=Otq. Comparing the above results, we obtain the following 
estimate. 

L e m m a  4.2. For te ~< r < ro we have a constant K =  K(r) such that 

I , [ / t ,+ t [2,+1] ~< (1 +eK) I,+iElt~' 12,3 +r~'t(t) 

+ Keq~A._,f Rtq(X)p:'(dX) (4.8) 

where r~;l(t) = eKnZ(e + b(e, r) + l/n + 1/1). 
Proof. By convexity, s ,, I,[a, [2,] ~ I ,+ i[/z~' 12,]; thus we have to treat 

DS(t), which in view of Lemma 4.1 and (4.7) amounts to estimating the 
t denote the relative entropy of the variables quadratic form Q". Let Iq 

{qX(p, V): p--qeAI}; we prove 

f IQ"(Otq)(Ntq(X ") -pq(t), Ptq(X) - Xq(t)) I/z;'(dX) 

~< i~-~ I (1 + itq[p;, 12,] +e21 z) (4.9) 

From the variational definition (3.1) of entropy 

f [NIq(X) -plq(t)]2lt~'(dX) 

1 ~ exp{cc[Ntq(X)_ptq(t)]} )tt(dX') <<.!I'qEu7 IL3 +~ (4.10) 

for all 0t > 0, and a similar relation holds true also for the components of 
piq. Choosing 0c = ~o IAt[, where 0% is smaller than the large-deviation rate 
of Ntq, we get a constant bound for the second term on the right-hand side 
of (4.10) directly from Cramer's theorem. In view of (2.9) both this con- 
stant and 0% depend only on a(r). Therefore if the matrix of the quadratic 
form Q"(Otq) admits a fixed bound depending on a(r), then we get (4.10) 
from (2.9). 

The opposite event is possible only if O~q is close to the boundary of the 
set of possible values of (p, n), which means a large deviation from the set 
of mean values prescribed by the uniform bound (2.9); thus (4.9) follows 
again from Cramer's theorem via (2.5). Indeed, from (4.7) we see that the 
value of Q" is uniformly bounded even if we do not have any bound for the 
form Q"(Olq), which completes the proof. QED 



FHP Cellular Automata 75 

The next step is to estimate I,[/z;'12,]; by convexity 

f I ,  +l [#~ 12,Ba-I P(dfl) <~ In +~ [g, [;t,] + f DP,+ t(t) P(dfl) I , , [#; ' IL] ~< 

(4. i t)  
as the collisions preserve 2 ,  where in view of (2.3) 

- f l o g  g. + l ( t, X) D~+,(t) = g,,+](t, BpX)/j;(dX') 

= ~ ~ {[Wq(t)--+qCt)]It;[rl(q,v)]--~"CWq(t))+~C+qCt)) } 
qEA n+l v~- V 

V ) Wv o Wq(t)~wVq(l) -'}- E [ X q - y , e ( •  q _ y ( l ) - - X q ,  y([~ ) w ; ( / ) ]  

Since the mean of 2'q.y is the same constant x(l  -2~:) I~ if v.It y and it 
is zero otherwise, expanding ~ as before, we get 

D~+ ,(t) P(dfl) 

<~ K'1 n2e 2 + x (  1 - -  2x) x~ 

x E E E [Wq(t)-Wq-y(t)](fl;[rl(q, v)]-A,[v/(q,  v)]) 
q~A  n+l vE V  y,~ v 

<~ K'I n2e 2 + Ksn2eb(e, r) (4.12) 

from the second condition of (2.9) because the sum for Y~t v is a second 
difference. 

The above results can be summarized as follows. We have a constant 
K* and some remainder R:J(t) such that for all n e  t~ 

I,[/~,+,l,t~,+~]<<.(l +eK*)I,+2[#~,lA,]+ R~'t+2(t) (4.13) 

whenever 0~<et~<r<ro,  where K* depends only on a(r), R~,'t(t) is an 
increasing function of n �9 N; moreover, for all 0 < z < ro and d >  0 we have 

T - - I  

lim l imsupe  z ~ R~'t(t)=O (4.14) 
I ~  +oo e ~ 0  t = O  

uniformly in T and n if eT<~ r and en <~d. This inequality can directly be 
solved by iteration; we obtain 

/.[u~-i,~-] ~< (1 + eK*)T/.+2r[#~l,t~] 
T - - I  

+ ~' (1 +eK*) r - ' - l  ~.t Rn+zr_2t(t) (4.15) 
t = 0  
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which implies (2.4) by (4.14) and completes the proof of Theorem 2.2. In 
view of (2.11 ), the Euler prescribed parameters are also stationary; thus the 
proof of Corollary 2.3 follows in the same way. 
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